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Magnetoviscosity in suspensions of grains with finite magnetic anisotropy
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Coupling between magnetic and mechanical rotational degrees of freedom of fine ferromagnetic grains is
provided by the energy of their magnetic anisotropy. In the limiting case of strong anisotropy, an applied
stationary magnetic field induces the greatest obstacles to the “rigid dipole” spin in a vortex ferrofluid flow,
while in the opposite ideal case, the “soft dipoles™ twist freely with the liquid. As a result, the field-dependent
part of the ferrofluids viscosity depends not only on the external magnetic field strength but also on the particle
magnetic anisotropy. An explicit expression coming from simple physical arguments and describing both these
dependencies of magnetoviscosity is derived and discussed.
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I. INTRODUCTION

The magnetic moment m of a small ferromagnetic grain is
coupled with the particle body due to the energy of magnetic
anisotropy KV, where K is the energy density and V is the
particle volume. This coupling depends on the dimensionless
ratio o=KV/kgT. At a high value of o, the vector m=me is
aligned strictly along the axis n of easy magnetization (e and
n are unit vectors). In the limit o> 1, the particle represents
a rigid magnetic dipole (e=n): Any change of its orientation
is possible only by Brownian rotation of the particle itself.

For a finite o, the vector m is only partly frozen into the
particle, thus it can turn within the particle body. For o~ 1,
the magnetic moment effectively fluctuates around the par-
ticle easy axis—these fluctuations were predicted and de-
scribed for the first time by Néel [1].

An externally imposed magnetic field, H, tends to align
the particle magnetic moment m along the vector H. As the
moment is coupled—to the extent of o—with the particle
body, the field H impedes free particle rotation with the flow
vorticity Q=(V X v)/2. Thus, there appears to be some dif-
ference between £ and the mean angular velocity of particle
rotation w. This lag induces viscous forces to act upon mag-
netic grains which leads to the additional dissipation of the
ferrofluid kinetic energy, and is manifested in an additional
rotational viscosity 7. The latter is a growing function of o
and the dimensionless magnetic field strength é=mH/kgT.
For the limiting case of rigid magnetic dipoles (o=), the
function 7x(£, o) was first obtained phenomenologically [2]:

3 §L§ 3 E-tanh§
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Here, 7 is the ferrofluid viscosity in the absence of an im-
posed magnetic field, ¢=nV is the volume fraction of sus-
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pended magnetic grains, and L(¢) is the Langevin function.
Expression (1) is written under the assumption of orthogo-
nality between H and  (e.g., for planar Couette flow in the
field directed across the confining solid surfaces or along the
flow, and for Poiseuille pipe flow in an axial magnetic field).
For arbitrary orientation of magnetic field, the right-hand
side of Eq. (1) should be multiplied by sin’a, where « is the
angle between vectors H and €.

Soon after [2], Martsenyuk et al. [3] found for 7g(&, )
another relation, derived microscopically from the Fokker-
Planck kinetic equation by the effective-field method:

2
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Though functions (1) and (2) do not appear alike, they
agree fairly well in the entire range of the Langevin’s param-
eter £ — see two upper curves in Fig. 1. Indeed, both expres-
sions yield the same magnitudes of 7 in low fields as well
as at saturation:

ng(&,

M= nPElA atE<1, 3)

Tt = pp(0, ) =(3/2)ndp at E— . (4)

The latter doubly limiting value is never reached for a
finite o. The first calculation, taking into account the finite
value of magnetic anisotropy, was performed by Raikher and
Shliomis [4] for the limiting case of strong magnetic field.
Later authors used the Fokker-Planck kinetic rotary diffusion
equation, also called the Smoluchowski equation, to find the
orientational distribution function (i.e., the probability den-
sity function) W(r) that determines statistical properties of an
assembly of magnetic grains.

In the general case of the grains with a finite magnetic
anisotropy, the function W(e,n,¢) is defined in the configu-
ration space representing the direct product of two vector
spaces, e ®n. A number of formalisms was developed to ob-
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FIG. 1. Field dependence of the reduced viscosity 7= 7/ 17;at
for a suspension of magnetically hard grains (o=00) computed by:
The effective-field method, Eq. (2),—solid line, the phenomeno-
logical expression (1)—dashed line, and Eq. (9) following from the
Cebers-Stepanov expression (5)—dotted line.

tain the kinetic equations, and different techniques were used
to solve them in various limiting cases, especially in the
rigid-dipole limit [3], as well as in more general conditions
[5-10]. Cebers [8] derived a very cumbrous expression giv-
ing the dependence of the rotational viscosity on & and o in
the range £> o. Stepanov [9] reobtained recently the Cebers’
result. He presented it in the following elegant form:
sat
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and determined more precisely the region of its applicability:
£>20. In Eq. (5), the functions of ¢ are defined by the
recurrent relationships

Lo=1, L,=L(¢&=cothé&-1/¢,

Ln—l - Ln+l = (21’1 + I)Ln/g’ (6)
and the functions of o are
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where

1
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0
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Note that the configurational integral R(o) is closely related
to the error function erf(x) [11]:

X
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and the functions F,(o) are none other than the Legendre
polynomials P,(x) averaged with the distribution function
W(x)=exp(ox?)/R(0), i.e., F,(0)={P,(x)).

Both kinds of functions entering symmetrically into Eq.
(5)—L,(¢) and F,(0)—tend to unity when their argument
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tends to infinity, so that 7 reaches in this double limit its
true saturation value (4). However, the approximation of a
local equilibrium used by Cebers [8] and Stepanov [9] is
justified only in a sufficiently strong magnetic field, £>2o0,
thus Eq. (5) fails in the limiting case of rigid dipoles, o=,
when it reduces to

35L5(8)

nr(§, ) = 7' 14+ 5L0,(8) + 16L4(8) ®)

Indeed, this dependence 7,(&), shown in Fig. 1 by the dotted
line, differs significantly from that given by Egs. (1) or (2).
The discrepancy is especially large in the region of low mag-
netic field strength—just as expected. Note, that expression
(5) is given (in the Cebers’ notation) in the book [10] without
any mention of the limited range of its applicability—see Eq.
(5.10) on p. 245. On the same page in Ref. [10], Fig. 5.1
demonstrates the &-dependence of the rotational viscosity in
the interval 0<¢=<15 for 0=4, 9, and 25. This figure mis-
leads the readers because both of the last o values do not
satisfy the condition £é>20 within the entire interval of &
presented in the figure.

To conclude this Introduction, an expression which de-
scribes the rotational viscosity of ferrofluids, over wide re-
gions of applied magnetic and anisotropy fields, has not yet
been found. Multiple attempts to derive such a formula mi-
croscopically have not yet been successful. A phenomeno-
logical expression for the viscosity has also not been found.
There is even an opinion that, for the case of moderate values
of o, one cannot obtain the expression macroscopically in a
reasonable way. This present work has the objective to fill
this gap to obtain an appropriate formula for 7g(&, o) pro-
ceeding from simple physical arguments.

II. ROTATIONAL VISCOSITY

In an external field H=Hh, h?>=1, the energy of a mag-
netically uniaxial particle is [12]

Ule,n) =—mH(e -h) — KV(e - n)>. (10)

The derivatives of the energy with respect to m=me and n
determine the net (total) magnetic field Hy acting upon the
particle magnetic moment, and the magnetic torque u acting
directly upon the particle body:

10U 2KV
y=————=Hh

e +7(e-n)n, (11)

pm=—-n X JdU/in=-2KV(e-n)(e X n). (12)

At equilibrium in a constant field, the magnetic moment is
parallel to Hy, i.e., m XHy=0, and the external torque is
absent, u=0. For our subsequent calculations, it is important
that the relaxation times of the magnetic and rotary mechani-
cal degrees of freedom differ greatly. In fact, the solid-body
relaxation time of the particle magnetic moment m to align
with the direction of the net magnetic field Hy is 7
=M,/(2ayK) [13], where M, is the bulk magnetization of
the dispersed ferromagnet, « is a dimensionless attenuation
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parameter entering into the Landau-Lifshitz magnetody-
namic equation, and 7 is the gyromagnetic ratio. For typical
values of M,=480G (magnetite), a=4X10"2, y=2
X107 s7'0e”!, and K=3X10’ erg/cm?, one obtains 7,
=10 s. This is three to five orders of magnitude smaller
than the Brownian rotary diffusion time 73=3%9V/kzT—
which characterizes the rate of the particle reorientation.

Thus, the equilibrium occurs in two steps: First, the mag-
netic moment rapidly—during the time of the order
tr—settles along Hy; second, the particle axis n rotates
slowly (for the time ~73) to the direction of H. As seen from
Eq. (11), a change of n causes some change of Hy, which, in
turn, deviates the vector e from its equilibrium. However,
owing to the adiabatic condition 7,<<7p, perturbations of e
decay rapidly, so in the process of orientational relaxation
this vector goes through a sequence of quasi-equilibrium
states determined by the condition m X Hy =0, i.e.,

mH(e X h) +2KV(e-n)(e X n)=0. (13)

Microscopic relationships (11)—(13) still fail to give a sat-
isfactory description of the particle magnetic moments and
easy axis’ orientations, since they are ignoring orientational
fluctuations of the unit vectors e and n. In order to pass to
macroscopic values, one needs to average Egs. (11)-(13)
with an appropriate orientational distribution function W de-
pendent on e, n, & o and the flow vorticity Q=(V Xv)/2. In
equilibrium, =0, the function W reduces to the Gibbs dis-
tribution Wy=2;'exp{~U/kzT} with U from Eq. (10):

_exp{é(e-h) + o(e-n)’}
07 1672R(0)(sinh&)/&

(14)

The equilibrium partition integral Z, in the denominator
of this expression is calculated in the Appendix. Averages
with W and W, are denoted below as (---) and (- - -), respec-
tively.

Averaging Eqgs. (12) and (13) gives

(m)=—-2KV((e-n)(e X n)), (15)

mH({e) X h) + 2KV{(e-n)(e X n))=0. (16)

Combining these equations yields an alternative expression
for the magnetic torque: {(u)=mH({e) X h), thus the forque-
balance equation takes its ordinary form [13,14]:

67V((w) — Q) =mH((e) X h). (17)

The torque () impedes free rotation of magnetic grains by
maintaining some difference between their angular velocity
(w) and the fluid vorticity . In turn, the viscous torque
acting upon the grain—see the left-hand side in Eq. (17)—
induces some lag of e behind h, thereby providing the very
existence of the magnetic torque. On the other hand, the
viscous torque causes an additional energy dissipation which
is just manifested in the rotational viscosity 7; the latter
may be presented in the form [14]
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3 O —(w)
2n¢ q

MR = (18)
so the problem comes to the determination of the relation
between the averaged frequency of the particle rotation and
the local vorticity of the carrier liquid.

The averaging in Eq. (16) should take into account that
the orientation of the particle magnetic moment is character-
ized by the unit vector e, while orientation of the particle
easy axis is described by the symmetric traceless tensor

Sik = %(”ink - %5,'/()~
The difference in parity reflects the double directedness of
the axis of magnetic anisotropy: Neither tensor s; nor any
other expression having a physical meaning change upon
replacement of n by —n. [This is just the reason why the
contraction e-n in Eq. (10) is squared.]
Let us introduce a vector, b, representing the contraction
of the vector e with the tensor s;:

bizsikek, bZ%(e‘n)n—%e. (19)

This vector determines the direction of the field of anisotropy
which is given by the last term in Eq. (11):

KV
H,=— (e -n)n.
m

With the aid of definition (19), one can rewrite H, as

4KV
H,=—"b.

3m
These last two expressions differ from each other by the
e-dependent term (2KV/3m)e. Therefore, the transition from
one of the two to another one means the insertion of an
isotropic—and then unimportant [12]—addition KV/3 into
the energy U of magnetic grains (10).

Dividing Eq. (16) by kzT and using the definition (19)

gives

&e) X h=21a(b X e). (20)

This equation relates the averages of the components e; of
vector e and the tensor e;e; composed of the components of
this vector. To decouple the second moment, let us apply the
following well known approximation [15] typical of mean
field theory.

The identical transformation of b and e vectors,

b=(b)+(b-(b)), e=(e)+(e—{(e)),
leads to
b X e=(b) X () +(b) X Ae —(e) X Ab + Ab X Ae,

where Ab=b—(b) and Ae=e—(e) are fluctuations whose av-
erages identically equal zero. Thus the average of the last
expression is

(b X e)=(b) X (e)+(Ab X Ae). (21)

Neglecting here the square of fluctuations, we pass from Eq.
(20) to
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3&e) X h=—4o(e) X (b). (22)

In equilibrium, when magnetic grains are on the average at
rest ((wy=0) in a quiescent ferrofluid (=0), the particle
orientational distribution function reduces to (14) and we
find (see the Appendix)

(e)g=L(h, (b)y=Fy(a)L(£)h, (23)

so that Egs. (17) and (22) are identically satisfied. It is clear
that in a moving ferrofluid the values (e) and (b) deviate
from (e), and (b), to the extent of (w). To find these dis-
turbed values, one must add to Egs. (17) and (22) one more
equation which would link (b) and {w) with each other.

Such an equation can be obtained in the following way.
Consider an element of ferrofluid volume from two frames of
reference: a local one 3’ rotating with the angular velocity
{w) and a fixed one 2. It is reasonable to assume that in the
system 2’ where the mean angular velocity of magnetic
grains equals zero, small deviations of (b) from its equilib-
rium value (b), decay by the simple relaxation law

d'(b) (b~ (b
dr ™

(24)

where d'/dt means the derivative in the rotating system X’
and 73=379V/kgT is the previously defined Brownian time of
rotary particle diffusion. Using now Eq. (24) and the well-
known kinematic relation

d(b) d'(b)
7=<w> X <b>+7,

linking the rates of change of a vector in the frames of ref-

erence % and 3, we obtain the equation
d(b 1

@ < - L@ - 03)
t TB

For a single grain of the diameter d=10 nm, the Brownian
diffusion time 7p=m9d>/2k,T is less than 107 s in water
(7=1072 Ps) and does not exceed 1073 s in high-viscous car-
rier liquids, such as glycerin (=10 Ps). So, the condition
Q7p<1—and all the more (w)75<<1—is usually satisfied.
Then, with the linear accuracy in {(w)7p, the stationary solu-
tion of Eq. (25) reads

(b) =(b)g + 75(e) X (b),. (26)

On substitution of (b) from Eq. (26) and (b), from Eq. (23)
into Eq. (22), one obtains with the same accuracy in ()7
4opFy(0)L(§)
3¢+ 40F,(0)L(&)

(e} X h= (). (27)

Eliminating this vector product from the torque-balance
equation (17) gives

B 3¢+ 40F,(0)L(é)
T 3E+40F,(0)L(E) + 2E0F () LX)

(w) (28)

As seen, the grains rotate freely (w=Q) if o=0, i.e., if the
particle magnetic moment is not coupled to the particle mass.
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[An analogy: The orientation of the magnetic needle of a
compass from South to North does not impede a rotation of
the compass frame around the vertical axis.] In the absence
of magnetic field (£=0), the grains rotate freely as well. Vice
versa, the stronger an applied magnetic field and the field of
anisotropy, the slower the rotation of magnetic grains with
respect to the surrounding liquid and hence the larger the
rotational viscosity. Substituting (w) from Eq. (28) into Eq.
(18) yields the sought relationship for the viscosity coeffi-
cient:

(o) i 2T
RS T =R S oy (o) L(E[2 + EL(E)] + 3E

This is our main result.

(29)

III. DISCUSSION

Neglecting the square of fluctuations in Eq. (21), herewith
we have supposed a smallness of deviations of (e) and (b)
vectors from their equilibrium values (23). Therefore, the
area of applicability of our approximation is limited to the
case (d73<<1. But this is not an additional limitation since
the phenomenological approach itself is valid only for small
Qg If this product is of order one, the rotational viscosity
coefficient becomes a function of ), so the ferrofluid ac-
quires non-Newtonian properties [16,17]. However, phenom-
enological theories do not describe well the dependence
7r(Q). For suspensions of rigid magnetic dipoles it was
demonstrated in Refs. [10,18,19]: Only the effective-field ap-
proximation [3] guarantees the correct description of rota-
tional viscosity even for Q753 ~ 10.

Setting about a discussion of our results, note first of all
that Eq. (29) correctly describes the rotational viscosity in all
conceivable limiting cases of strong and weak magnetic
fields and fields of anisotropy. Let us consider them.

The formula (29) can be written

7']Sat gL(g)
K24 eL(9) +3(go)2F (o) L(OT

This differs from Eq. (1) on only point: Eq. (30) contains an
additional (last) term in the denominator. In the limit of mag-
netohard grains, o— o, this term disappears as 1/0 and Eq.
(30) reduces to Eq. (1), i.e., we revert to the well-studied
case of rigid dipoles. In Fig. 2, the reduced viscosity coeffi-
cient 77—calculated from Egs. (5) and (29)—is plotted as a
function of ¢ for some fixed values of o.

In the limiting case of high magnetic fields, Eq. (29) re-
duces to

MR = (30)

sat 20’F2(0')

SRS 2k e) ) G

TR

sat _

According to this, the ratio 7z/ 75'=40"/45 at small values
of o and tends to saturation as 1-3/(20) for o> 1. Figure 3
displays the reduced viscosity 7(e, ) given by our Eq. (31)
and by the expression following from the Cebers-Stepanov’s
Eq. (5) at £&—co:
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FIG. 2. The reduced viscosity 7 versus the dimensionless mag-
netic field ¢ for suspensions of grains with the different magnetic
anisotropy o as calculated from our Eq. (31)—solid lines, and from
the Cebers’ expression (32)—dashed lines in the area of applicabil-
ity of the expression, £>20, and dotted lines out of the area.

35F%(0)
_ . sat 2
(0 0) = M 5F,(0) + 16F,(0)

Substituting here for F, and F, from Eq. (7) leads to the
relationship [8]

(00,09 = 7 9(R'/R - 1/3)*
S R 2(1=3R'/R+4R"IR)’

(32)

As seen in Fig. 3, the results of both approaches—
phenomenological and microscopic—are similar in the case
of large ¢ but differ for small and moderate values of ¢ as
shown in Fig. 2.

At last, in the limit of low magnetic field, Eq. (29) gives
[with allowance for the definition (4)]

ﬁ T T —I ’’’’’ T __
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FIG. 3. The reduced saturation viscosity (in the infinitely strong
magnetic field, £=) versus the dimensionless energy of magnetic
anisotropy o as calculated from Eq. (31)—solid line, and from Eq.
(31)—dashed line.
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aF, (o)

m, E< 1. (33)

MR= 7]¢§2
The Cebers-Stepanov resulting expression (5) is not valid
in this limiting case. For the commonly used magnetite
ferrofluids, the parameter o lies within the interval 5...8,
thus the condition of applicability of their microscopic
theory, £> 20, is satisfied only at saturation, &> 1. This limi-
tation greatly reduces the value of Eq. (5) since it cannot be
applied to the most interesting and widely used region of the
Langevin parameter £<10 that corresponds to the field
strength H<<1500 Oe.

Thus, we have demonstrated that the magnetoviscous ef-
fect in ferrofluids with the finite value of magnetic aniso-
tropy of suspended grains does yield to phenomenological
description. On the way, we obtained the sufficiently simple
and compact expression (29) giving the reasonable depen-
dencies of the rotational ferrofluid viscosity on both the ap-
plied magnetic field strength and the energy of magnetic an-
isotropy. Our formula is free from the above mentioned
shortcomings and restrictions of previous microscopic theo-
ries. Interestingly, as it is seen from the dependencies pre-
sented in Figs. 2 and 3, ferrofluid viscometry—the typically
hydrodynamic measurements—is capable of delivering a
valuable information of such solid-body matter as the mag-
netic anisotropy of dispersed ferromagnets.
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APPENDIX

We indicate here the calculation of some quantities typical
of the problem. Let us determine first the equilibrium parti-
tion function

Zy= f exp{é&(e - h) + o(e - n)’}de dn. (A1)

The integral is factorable. Indeed, integrating first over the
orientation of anisotropy axis n and then over the orientation
of magnetic moment e, we find

sinh &

Zy= J P J ef¢Mde = 1677R(0) . (A2)

We now calculate the average value (e),. Since at equi-
librium an external magnetic field sets a sole preferable di-
rection in the problem, (e),=((e-h)h),. Thus,
dIn ZO

dé

To find the quantity (b)0=<%(e-n)n—%e>
auxiliary integral

(e)o=h =L(§h. (A3)

" consider the
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Ny = f nnexp{o(e - n)%}dn.

Generally, it can be written in the form

Ny=A8;+B(3eie,— 16y, (A4)

where A and B are constants. Taking the trace of both sides
of the last expression, we have A=47R(0)/3. The constant B
is determined by contraction of N;; from Eq. (A4) with ¢;e;:
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Nyeier=A +B:f (e-n)ze"(e'“)zdn:47TR'(0').

(AS)

Therefore, B=4m(R'(0)-R(0)/3)=87R(0)F,(0)/3. Now
one can write down (b;), in the form

(bo=2y' f (3Nye, - 2e;)expié(e-h)lde.  (A6)

Substituting here N from Eq. (A4), Z, from Eq. (A2), and
the above constants A and B, finally gives
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